1 CONTRACTIONS OF INTEGRABLE EQUATIONS

N.A.GROMOV, I.V.KOSTYAKOV and V.V.KURATOV
Department of Mathematics, Komi Science Centre
Ural Division, Russian Academy of Sciences
Syktyvkar, 167000, Russia
e-mail: parma@omkomi.intec.ru

The contraction is applied to obtaining of integrable systems associated with nonsemisimple algebras. The effect of contraction is splitting off some components from initial system without loss of integrability.

1 Introduction
The Lie algebraic approach to integrable systems is well known. There are many models associated with simple finite and infinite algebras. The step toward general position algebras was made by Lesnov and Saveliev.[?] They used nonsemisimple algebras and the contraction procedure. Here we investigate an action of the contraction procedure on integrable equations. All examples are related to Toda and KdV systems. We consider the contractions of finite and affine algebras and Z_2-graded contractions of the Virasoro algebra.

2 Contraction
2.1 Finite algebra
Let $G_1 = (V, [\cdot, \cdot]_1)$ and $G_2 = (V, [\cdot, \cdot]_2)$ be two Lie algebras constructed on the vector space V. G_2 is a contraction of G_1 if there exists a family Φ_ε, $\varepsilon \in (0, 1]$, of invertible linear transformations of V so that $\lim_{\varepsilon \to 0} \Phi_\varepsilon^{-1}[\Phi_\varepsilon x, \Phi_\varepsilon y]_1 = [x, y]_2$, $\forall x, y \subset V$. One can also say that G_1 is a deformation of G_2. Let G_1, be a simple Lie algebra of rank r, equipped with an invariant scalar product
denoted (,). We choose a Cartan subalgebra with an orthonormal basis H_i and a set of simple roots α_i.

\[[H_i, H_j] = 0, \quad [H_i, E_{\pm \alpha}] = \pm \alpha_i E_{\pm \alpha}, \quad [E_\alpha, E_{-\alpha}] = H_\alpha, \tag{1} \]

where $H_\alpha = (E_\alpha, E_{-\alpha}) \sum i \alpha_i H_i$. Let R_c denote a subset of simple roots. If we choose $\Phi_{\varepsilon}: E_\alpha \rightarrow \varepsilon E_\alpha$ for $\alpha \in R_c$, then for G_2 the last commutators in (1) are

\[[E_\alpha, E_{-\alpha}] = H_\alpha \quad \alpha \notin R_c, \quad [E_\alpha, E_{-\alpha}] = 0 \quad \alpha \in R_c. \tag{2} \]

2.2 Infinite algebra

Let $h_i, e_i, f_i, i = 0, 1, \ldots r$ are generators of the affine Kac-Moody algebra \hat{G}_1 with Cartan matrix $k_{ij} = \alpha_j(h_i)$ and commutators

\[[h_i, h_j] = 0, \]

\[[h_i, e_j] = \alpha_j(h_i)e_j, \quad [h_i, f_j] = -\alpha_j(h_i)f_j, \]

\[\text{ad}^{1-k_{ij}} e_i e_j = 0, \quad \text{ad}^{1-k_{ij}} f_i f_j = 0, \]

\[[e_i, f_j] = \delta_{ij} h_i. \tag{3} \]

If we choose $\Phi_{\varepsilon}: e_p \rightarrow \varepsilon e_p$ for some p, then for \hat{G}_2 the last commutator in (3) is equal zero for $i = p$.

2.3 Virasoro algebra

Let us split the generators of the Virasoro algebra Vir_c

\[[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^2 - 1)\delta_{n+m,0} \tag{4} \]

into two sets, even $L_0 = 2A_0 - \frac{c}{8}, L_{2n} = 2A_p$ and odd $L_{2n+1} = 2B_p$. In A_p, B_p language (4) looked as

\[[A_p, A_q] = (p-q)A_{p+q} + \frac{2c}{12}(p^2 - 1)\delta_{p+q,0}, \]

\[[A_p, B_q] = (p-q)B_{p+q}, \]

\[[B_p, B_q] = (p-q)A_{p+q+1} + \frac{2c}{12}(p - \frac{1}{2})(p + \frac{1}{2})(p + \frac{3}{2})\delta_{p+q+1,0}. \tag{5} \]

There is a Vir_{2c} subalgebra in Vir_c: $Vir_c = Vir_{2c} + something$

This is Z_2 graded \hat{Vir}_c. Three Z_2-grading contractions are given by the matrix $\varepsilon_1, \varepsilon_2, \varepsilon_3$.[?] We will use only ε_1: $\varepsilon_{11} = \varepsilon_{12} = \varepsilon_{21} = 1, \varepsilon_{22} = 0$. In this case the last commutator in (5) is equal zero.
3 Toda Chain

3.1 1D Toda chain
The Toda chain is the system with r degrees of freedom, phase space co-
ordinates (q_i, p_i), Poisson bracket $\{p_i, q_j\} = \delta_{ij}$, and the Hamil-
tonian

$$h = \frac{1}{2} \sum_i p_i^2 + \sum_R \exp(\alpha \cdot q),$$

where $(\alpha \cdot q) = \sum_i \alpha_i q_i$. The equations of motion

$$\begin{align*}
\dot{q}_i &= p_i \\
\dot{p}_i &= -\sum_i \alpha_i \exp(\alpha \cdot q)
\end{align*}$$

admit a Lax pair representation

$$\dot{L} = [L, M],$$

$$L = \frac{1}{2} \sum_i p_i H_i + \sum_R n_\alpha e^{\frac{1}{2}(\alpha \cdot q)}(E_\alpha + E_{-\alpha}),$$

$$M = \sum_R n_\alpha e^{\frac{1}{2}(\alpha \cdot q)}(E_\alpha - E_{-\alpha}), \quad n_\alpha^2 = \frac{1}{4(E_\alpha, E_{-\alpha})},$$

where $H_i, E_{\pm \alpha}$ and $[,]_1$ are generators and Lie bracket of G_1. Let G_2 be
a contraction of G_1 defined in previous section. We call the system (8) in
algebra G_2 the contracted Toda chain. The equations of motion, Hamiltonian
and Lax pair representation are

$$\begin{align*}
\dot{p}_i &= -\sum R/R_c \alpha_i \exp(\alpha \cdot q) \\
\dot{q}_i &= p_i,
\end{align*}$$

$$h = \sum_i \frac{1}{2} p_i^2 + \sum_R \exp(\alpha \cdot q),$$

$$\dot{L} = [L, M].$$

The $sl(2)$ Toda contracted chain is a free particle. The $sl(3)$ case leads to
the elimination of some interacting terms in hamiltonian.

3.2 2D Toda chain
The equation of motion is zero curvature condition?

$$\left[\frac{\partial}{\partial z_+} + A_+, \frac{\partial}{\partial z_-} + A_- \right]_1 = 0,$$
\[A_\pm = (hu_\pm) + (E_\pm f_\pm) = \sum_{i=1}^{r} (h_i u_i^\pm + E_i f_i^\pm). \] (10)

For \(\rho_i = \ln f_i^+ f_i^- \) we have in \(G_1 \) algebra

\[\frac{\partial^2 \rho_j}{\partial z_+ \partial z_-} = \sum_{i=1}^{r} k_{ij} e^{\rho_i}, \] (11)

where \(k_{ij} \) is \(r \times r \) Cartan matrix of \(G_1 \). Let \(G_2 \) be a contraction of \(G_1 \). We call the system (11) in \(G_2 \) algebra the contracted 2D Toda chain. The equations of motion are

\[\frac{\partial^2 \rho_j}{\partial z_+ \partial z_-} = \sum_{i=1}^{r} k'_{ij} e^{\rho_i}, \] (12)

where several columns of Cartan matrix corresponding to contracted roots \(\alpha \in R_c \) are vanished. Let \(R_c = \alpha_i \), then the equations are reduced to

\[\frac{\partial^2 \rho_i}{\partial z_+ \partial z_-} = F(\rho_1, \ldots, \rho_{i-1}, \rho_{i+1}, \ldots, \rho_r), \]
\[\frac{\partial^2 \rho_l}{\partial z_+ \partial z_-} = \sum_{j=1}^{r} k'_{lj} e^{\rho_j}, \quad l, j \neq i. \] (13)

The contracted component \(\rho_i \) has no self-action and split off from the other components, because there is no \(\rho_i \) in r.h.s. of (13). Therefore, we may consider the contraction of 2D Toda chain as the transition between chain with Cartan matrix \(k \) and chain with matrix \(\tilde{k} \), where \((r-1) \times (r-1)\) matrix \(\tilde{k} \) is obtained by crossing out of \(i \)-th column and \(i \)-th row from \(k \). The equations of contracted system looked as

\[\frac{\partial^2 \rho_{\text{contr}}}{\partial z_+ \partial z_-} = F(\rho_1, \ldots, \rho_{r-1}), \]
\[\frac{\partial^2 \rho_l}{\partial z_+ \partial z_-} = \sum_{j=1}^{r-1} \tilde{k}_{lj} e^{\rho_j}, \] (14)

where \(\rho_{\text{contr}} \) is contracted component and \(l, j = 1, 2, \ldots, r - 1 \). All these transitions may be classified in terms of Dynkin diagrams using the following property: if the lines connecting any two points are severed, the resulting diagram is a Dynkin diagram. Thus, \(\tilde{k} \) remains a Cartan matrix. For example, there are three contractions of \(D_4 \) chain:

\[D_4 \to A_3 + \rho_{\text{contr}}, \]
\[D_4 \to D_3 + \rho_{\text{contr}}, \]
\[D_4 \to A_1 + A_1 + A_1 + \rho_{\text{contr}}. \] (15)
3.3 2D affine Toda system

The base formulas for the affine Toda chain are given in. The equations of motion is zero curvature condition

\[[L, \bar{L}]_1 = 0, \quad L = e^{-\psi} \partial_x e^{\psi} + \Lambda, \quad \bar{L} = \partial_t + e^{-\psi} \Lambda e^{\psi}, \]

\[\frac{\partial^2 \psi}{\partial x \partial t} = \sum_{i=0}^{r} h_i e^{\alpha_i(\psi)}, \]

\[\psi = \sum_{i=0}^{r} \psi_i h_i, \quad \Lambda = \sum_{i=0}^{r} e_i, \quad \bar{\Lambda} = \sum_{i=0}^{r} f_i, \]

(16)

where \(h_i, e_i, f_i, i = 0, 1, \ldots, r \) are generators of the affine Kac-Moody algebra \(\hat{G}_1 \) with Cartan matrix \(\hat{k}_{ij} = \alpha_j(h_i) \). We call the system (16) in algebra \(\hat{G}_2 \) the contracted affine Toda chain. The Lax par representation and equations of motion are

\[[L, \bar{L}]_2 = 0, \]

\[\frac{\partial^2 \psi_i}{\partial x \partial t} = \exp \sum_{i=0}^{r} \bar{k}_{ji} \psi_j \quad i \neq p, \quad \frac{\partial^2 \psi_p}{\partial x \partial t} = 0, \]

(17)

where \(p \)-th column of Cartan matrix corresponding to contracted field \(\psi_p \) is not arise in equations. Let \(\phi_j = \psi_j - \psi_p \) for \(j \neq p \) then for \(\hat{A}_n \) (17) looked as

\[\frac{\partial^2 \phi_i}{\partial x \partial t} = \exp \sum_{i=0}^{r-1} \bar{k}_{ji} \phi_j, \quad \frac{\partial^2 \psi_{\text{contr}}}{\partial x \partial t} = 0, \]

(18)

where matrix \(\bar{k} \) is obtained by crossing out of \(p \)-th column and \(p \)-th row from \(\hat{k} \). The affine Cartan matrix of \(\hat{A}_n \) algebra reduced after these crossing to Cartan matrix of finite algebra. Thus, the affine Toda chain reduced to usual Toda chain. For example, there are two contractions of \(\hat{A}_3 \) chain:

\[\hat{A}_3 \rightarrow A_3 + \psi_{\text{contr}}, \]

\[\hat{A}_3 \rightarrow D_3 + \psi_{\text{contr}}. \]

(19)

There is a contraction of \(\hat{A}_2 \) chain, \(\hat{A}_2 \rightarrow A_1 + \psi_{\text{contr}} \), which described a transition from the Sine-Gordon to the Liouville equation.

Thus, contractions give a method of transitions between the different Toda models.

4 KdV equation

4.1 The AKNS hierarchy

One of the approach to the contraction of the KdV equation is based on AKNS method of reproducing of integrable equations. It is easily shown for \(sl(2) \) AKNS hierarchy that after contraction to \(isl(2) \) algebra all equations are reduced to linear equations.
4.2 The second Poisson bracket structure

The another approach to the contraction of the KdV equation is based on Z_2-graded contraction of the Virasoro algebra. The KdV equation can be written as

$$u_t = (\partial^3 + 2u\partial + 2\partial u)\frac{\delta H}{\delta u} = \Theta \frac{\delta H}{\delta u},$$ \hspace{1cm} (20)

where $H = I_2[u] = \int \frac{u^2}{2} dx$. δ denotes a variational derivative. The associated Poisson bracket for functionals $F[u]$ and $G[u]$ are

$$\{ F[u], G[u] \} = \int \frac{\delta F}{\delta u} \Theta \frac{\delta G}{\delta u} dx.$$ \hspace{1cm} (21)

The conserved quantities $I_n[u]$ of KdV equation are in involution with respect to this bracket. For $u(x)$ coordinates Poisson bracket looked as

$$\{ u(x), u(y) \} = \Theta \delta(x - y).$$ \hspace{1cm} (22)

Considering equating (22) in the Fourier space, one is lead to the Virasoro algebra

$$\{ L_n, L_m \} = (n - m)L_{n+m} + \frac{c}{12} n(n^2 - 1)\delta_{n+m,0}.$$ \hspace{1cm} (23)

After rewriting in Z_2 grading language (sect.2.3), and returning from the Fourier to configuration space we have two kinds of coordinates $v(x)$, $w(x)$ and a new 2×2 matrix Θ–operator. It is easily shown that after the ε_1 contraction of the Virasoro algebra, Θ-operator looked as

$$\hat{\Theta}_{\text{contr}} = \begin{pmatrix} \partial^3 + 2v\partial + 2\partial v & 2w\partial + 2\partial w + iw/2 \\ 2w\partial + 2\partial w - iw/2 & 0 \end{pmatrix}.$$ \hspace{1cm} (24)

We can define the contracted Poisson bracket

$$\{ F[v, w], G[v, w] \}_{\text{contr}} = \int \nabla F[v, w] \hat{\Theta}_{\text{contr}} \nabla G[v, w] dx,$$ \hspace{1cm} (25)

where ∇ denotes variational gradient. This bracket has at least one set of the conserved quantities $I_n[v]$ in involution, because there is a Virasoro subalgebra in contracted Virasoro algebra. Put $H[v, w] = I_2[v]$ as the Hamiltonian than we have two equations

$$v_t = \{ v, H \}_{\text{contr}} = \partial^3 v + 6vv_x,$$

$$w_t = \{ w, H \}_{\text{contr}} = 2ww_x + 4v_x w - \frac{i}{2} vw.$$ \hspace{1cm} (26)

Thus, after contraction we have again the KdV equation for $v(x)$ and some equation for $w(x)$.

References
References

